
Week 3 - Wednesday



 What did we talk about last time?
 Inheritance









 We can imagine a hierarchy of inheritance starting with a Person with the 
following members:
 Name (final)
 Age

 Student extends Person and adds:
 Major
 GPA

 Politician extends Person and adds:
 Political party

 OtterbeinStudent extends Student and adds:
 ID number (final)

 Members should have getters and setters as appropriate
 All classes should override the toString() and equals() methods





 Sometimes you want to do more than add
 You want to change a method to do something different
 You can write a method in a child class that has the same 

name as a method in a parent class
 The child version of the method will always get called
 This is called overriding a method



 We can define the Mammal class as follows:

public class Mammal {
public void makeNoise() {

System.out.println("Grunt!");
}

}



 From there, we can define the Dog, Cat, and Human subclasses, 
overriding the makeNoise()method appropriately

public class Dog extends Mammal {
public void makeNoise() { System.out.println("Woof"); }

}

public class Cat extends Mammal {
public void makeNoise() { System.out.println("Meow"); }

}

public class Human extends Mammal {
public void makeNoise() { System.out.println("Hello"); }

}



 All normal Java methods use dynamic binding
 This means that the most up-to-date version of a method is 

always called
 It also means that the method called by a reference is often not 

known until run-time
 Consider a class Wombat which extends Marsupial which 

extends Object
 Let's say that Wombat, Marsupial, and Object all 

implement the toString() method



 Here's a simple Marsupial class:
public class Marsupial {

private final boolean pouch;

public Marsupial(boolean pouch) {
this.pouch = pouch;

}

public boolean hasPouch() {
return pouch;

}

public String toString() {
return "Marsupial " + (pouch ? "with" : "without") + " a pouch";

}
}



 And the Wombat class extends the Marsupial class:
public class Wombat extends Marsupial {

private final String name;

public Wombat(String name) {
super(true); // Wombats have pouches
this.name = name;

}

public String getName() {
return name;

}

public String toString() {
return name + " the Wombat";

}
}



 What happens when we call toString() on an Object, a 
Marsupial, and a Wombat, all stored in Object references?

Object object = new Object();
Object marsupial = new Marsupial(false);
Object wombat = new Wombat("Winifred");
// Prints "java.lang.Object@7852e922"
System.out.println(object.toString());
// Prints "Marsupial without a pouch"
System.out.println(marsupial.toString());
// Prints "Winifred the Wombat"
System.out.println(wombat.toString());



 Every object has a copy of its parent object inside (which has its 
parent inside, and so on)

 All methods from the class and parents are available, but the 
outermost methods are always chosen
 If a class overrides its parent's method, you always get the overridden 

method

Wombat

toString()
getName()

Marsupial

toString()
hasPouch()

Object

toString()



 In addition to using super to call parent constructors, you can use super to call parent 
methods

 You can only call methods "one level up", not methods that were overridden by parents
public class Wombat extends Marsupial {

private final String name;

public Wombat(String name) {
super(true); // Wombats have pouches
this.name = name;

}

public String getName() {
return name;

}

// Prints "Name the Wombat (Marsupial with a pouch)"
public String toString() {

return name + " the Wombat (" + super.toString() + ")";
}

}







 More on the final keyword
 Abstract classes
 More on the instanceof keyword and getClass()

method
 UML class diagrams



 Keep reading Chapter 17
 Keep working on Project 1
 Due next Friday


	COMP 2000
	Last time
	Questions?
	Project 1
	Inheritance Examples
	The Person class
	Overriding Methods
	Adding to existing classes is nice…
	Mammal example
	Mammal subclasses
	Dynamic binding
	Marsupial class
	Wombat class
	Wombat example
	How to think about inheritance
	Using super to call parent methods
	Quiz
	Upcoming
	Next time…
	Reminders

